

In situ UV-vis Characterization & Activity Testing of Flat Model Catalysts in Custom Built Micro Reactors

Hans Fredriksson Syngaschem BV ECOSS 34, Aarhus, 2018

Syngaschem BV synthesis gas chemistry fundamental research projects

syngaschem ev synthesis gas chemistry fundamental research projects presentation available at www.syngaschem.com

Syngaschem BV is research partner of Synfuels China Technology, Co Ltd

Model Catalyst vs Real Catalyst

Academic science Catalyst manufacturers

- Improved understanding
- Developing new concepts
- Compare individual components of a catalyst

Catalyst manufacturers, Chemical producers

- Screening of catalysts
- Develop an active, durable and cheap catalyst

Figure from Concepts of Modern Catalysis and Kinetics, Chorkendorff & Niemantsverdriet, Wiley-VHC (2017)

SYNGASCHEM BV synthesis gas chemistry fundamental research projects [1] S.B. Simonsen, I. Chorkendorff, S. Dahl, M. Skoglundh, J. Sehersted, S. Helveg, J. Am. Chem. Soc. 132 (2010) 7968–7975 [2] P.J.F. Harris, E.D. Boyes, J.A. Cairns, J. Catal. 82 (1983) 127–146

Model Catalyst vs Real Catalyst Interpretation - CO-oxidation on CuO_x

Thin film, (G.G. Jernigan, G. A. Somorjai, J. Catal. 147 (1994) 567–577)

We find that the reaction rate of CO oxidation is fastest on metallic copper, and at 300°C the rate decreases with increasing copper oxidation state: Cu (0) > Cu (+1) > Cu (+2). The apparent activation energies for the reaction

Cu(111) single crystal, (B. Eren, C. Heine, H. Bluhm, G.A. Somorjai, M. Salmeron, J. Am. Chem. Soc. 137 (2015) 11186–11190) Under oxygen-lean conditions, the surface is not fully oxidized to Cu₂O. However, the surface is more reactive once a partial surface Cu₂O layer forms.

Powder, (T.J. Huang, D.H. Tsai, CO oxidation behavior of copper and copper oxides, Catal. Letters. 87 (2003) 173–178)

Among the three copper species (Cu, Cu₂O, CuO) tested, Cu₂O was the only one that was active at 140°C

Cu⁰, Cu⁺ and Cu²⁺, all suggested as active species

Supported nanoparticles

(B. White, M. Yin, A. Hall, D. Le, S. Stolbov, T. Rahman, N. Turro, S. O'Brien, Nano Lett. 6 (2006) 2095–2098)

Cu₂O most active for COoxidation

Model Catalyst Testing

UV-vis fiber spectrometer

Quartz tube reactor

Mass spectrometer

Quartz tube reactor

Mass spectrometer

Powder catalysts – Quartz tube reactor

- + Small catalyst mass (~10 mg)
- + Small gas volume
- Small surface area

NH₃ decomposition – Bench mark measurements

Qualitative agreement with literature/theory Ru>>Co>Ni>Fe Not limited by thermodynamic equilibrium

Literature reference

Y. Bu, C.J. Weststrate, J.W. Niemantsverdriet, H.O.A. Fredriksson, ACS Catal. 6 (2016) 7994-8003

UV-vis fiber spectrometer

Quartz tube reactor

Flat model catalysts – reactor design

(R)WGS with in-situ UV-vis and XPS

(R)WGS is a slow reaction – mass spec. not sensitive enough

RWGS conditions - XPS

Three catalysts:

• Cu, CeO_x and Cu/CeO_x

At 250 °C, under RWGS conditions

- Cu can switch between Cu⁰ and Cu¹⁺
- CeO_x cannot
- CeO_x promotes Cu red-ox
 - Ce³⁺ oxidized in CO_{2,} supressed by Cu

Optical center – oxidation state descriptor

Peak shifts reveal Cu oxidation

fundamental research projects

Cu and Cu/CeOx red-ox – UV-vis

Observations:

- Ce³⁺ promotes H₂O and CO₂ dissociation
- Dissociated H₂O and CO₂ oxidize Cu⁽⁰⁾ to Cu⁺
- Cu⁽⁰⁾ promotes Ce⁴⁺ reduction to Ce³⁺
- Cu oxidation follows the trend CeO_x/Cu > ZnO/Cu > Cu (same as activity)

At 250 °C, under RWGS and WGS conditions

 Cu shows red-ox behavior that is promoted by CeO_x (in the Ce³⁺ state)

Y. Bu, C.J. Weststrate, J.W. Niemantsverdriet, H.O.A. Fredriksson, ACS Catal. 6 (2016) 7994-8003

Model Catalyst Testing

UV-vis fiber spectrometer

Quartz tube reactor

Mass spectrometer

Simultaneous in-situ UV-vis and mass spectroscopy

Y. Bu, J. W. (Hans) Niemantsverdriet, H. O. A. Fredriksson, ACS Catal. 2016, 6, 2867–2876

O₂ concentration starting at less than 0.5%

- Cu oxidation coincides with catalyst deactivation
- Cu⁽⁰⁾ only maintained upon full O₂ conversion
- Activity: $Cu^{(0)} > Cu^{2+} > Cu^+$

Y. Bu, J. W. (Hans) Niemantsverdriet, H. O. A. Fredriksson, ACS Catal. 2016, 6, 2867–2876 Y. Bu, J. W. (Hans) Niemantsverdriet, H. O. A. Fredriksson, J. Catal., 357 (2018) 176–187

Model Catalyst vs Real Catalyst Interpretation - CO-oxidation on CuO_x

Thin film, (G.G. Jernigan, G. A. Somorjai, J. Catal. 147 (1994) 567–577)

We find that the reaction rate of CO oxidation is fastest on metallic copper, and at 300°C the rate decreases with increasing copper oxidation state: Cu (0) > Cu (+1) > Cu (+2). The apparent activation energies for the reaction

Conclusions

- In situ characterization of flat model catalysts powerful combination
- Oxidation state of catalyst depends on gas composition
- Catalyst activity depends on oxidation state

Reduction of Cu-Promoted Fe Model Catalysts

Studied by In Situ Indirect Nanoplasmonic Sensing and X-ray Photoelectron Spectroscopy H. O. A. Fredriksson, E. M. Larsson Lanhammer J. W. (Hans) Niemantsverdriet, J. Phys. Chem. C, 2015, 119, 4085-4094

Cu Model Catalyst Dynamics and CO Oxidation Kinetics Studied by Simultaneous in Situ UV–Vis and Mass Spectroscopy

Y. Bu, J. W. (Hans) Niemantsverdriet, H. O. A. Fredriksson, ACS Catal. 2016, 6, 2867–2876

Preferential Oxidation of CO in H₂ on Cu and Cu/CeO_x Catalysts Studied by in situ UV-Vis and Mass Spectrometry and DFT

Y. Bu, J. W. (Hans) Niemantsverdriet, H. O. A. Fredriksson, J. Catal., 357 (2018) 176–187

Intrinsic Role of the Oxide Phase in Cu-based Model Catalyst Dynamics Studied by in situ UV-vis and XPS

Y. Bu, C. J. Weststrate, J. W. (Hans) Niemantsverdriet, H. O. A. Fredriksson, ACS Catal. 2016, 6, 7994-8003

Syngaschem BV acknowledges funding from Synfuels China Technology Ltd Presentation available at www.syngaschem.com